Milchstraße

Unsere Heimat


Fotos  M.Heeg

Die Milchstraße, eine bzw.  ” unsere ”  Galaxie …

Die Milchstraße ist die Galaxie in welcher sich unser Sonnensystem mit der Erde befindet.
Entsprechend ihrer Form als flache Scheibe, die aus Milliarden von Sternen besteht,
ist die Milchstraße von der Erde aus ( von der Seite gesehen ) als bandförmige Aufhellung am Nachthimmel sichtbar, die sich über 360° um uns herum erstreckt.

Ihrer Struktur nach zählt die Milchstraße zu den Balkenspiralgalaxien.

Während heute wegen der Lichtverschmutzung für viele die Milchstraße nicht mehr zur Alltagserfahrung gehört, war sie seit jeher als heller, schmaler Streifen am Nachthimmel allgemein bekannt.

Dass sich dieses weißliche Band in Wirklichkeit aus unzähligen einzelnen Sternen zusammensetzt,  welche den für uns hellen Streifen bilden, wurde in der Neuzeit 1609 von Galileo Galilei erkannt, der die Erscheinung als Erster durch ein Fernrohr betrachtete.

Die Milchstraße besteht nach heutiger Schätzung aus ca. 100 bis 300 Milliarden Sternen.

Meine drei Fotos ( aufgenommen am Bodensee im Aug. 2018 ) zeigen nur einen kleinen Ausschnitt im Bereich der Sternbilder Schwan / Adler.

Sie wurden mit stehender Kamera, ohne Nachführung aufgenommen.

Durchmesser          170.000 – 200.000 Lichtjahre
Dicke                  3.000 – 16.000 (Bulge) Lichtjahre
Sterne                               ca. 100 – 300 Milliarden
Typ                                            Balkenspiralgalaxie

Quelle : Wikipedia

 

Okularprojektion

“Einfache Astrofotos”

   

Fotos  M.Heeg     

Astrofotos

Die Okularprojektion ist die einfachste Methode um zu Astrofotos zu gelangen. Es wird einfach die Kamera hinter dem Beobachtungsokular des Teleskops in den Fokus gebracht. Man benötigt dazu bei Langzeitbelichtungen, z.B. mit einer Spiegelreflexkamera (DSLR) einen T2-Adapter zur stabilen Befestigung und Positionierung der Kamera am Okular.

Für kurze Schnappschüsse, heller Objekte wie Mond – ( Sonne => NUR MIT FILTER ) und Planeten ist aber auch gut ein Smartphone oder Handy zu gebrauchen.

Das Aufnahmegerät wird hier frei Hand am Okular gehalten. Mit etwas Geduld und Übung gelingen auch so brauchbare Aufnahmen.

Meine Aufnahmen zeigen eine solche “frei Hand” Okularprojektion der Sonnenoberfläche mit einer speziell zur Sonnenbeobachtung geeigneten Optik, wie auch am Mond.

Zu sehen ist im Sonnenfoto die Chromosphäre, eine ca. 10000 Kilometer ( 1,5 % des Sonnenradius ) “dicke” Schicht aus dünnem Gas. In meinem Foto abglichtet, bei einer gefilterten Wellenlänge von 656,28 Nanometern.

Ohne spezielle Filter dürfen Sie weder mit dem Auge direkt , noch mit einer Kamera das Licht der Sonne versuchen in einer Optik anzusehen oder abzulichten.

Ihr Auge wie auch die Kamera werden definitiv schwer geschädigt, bzw. Ihr Auge bis hin zur Erbildung zerstört !

Die Mondbeobachtung hingegen bzw. auch die Fotografie ist absolut gefahrlos ohne spezielle Filter durchführbar.

Astronomische Entfernungsmaße

Nah – Fern – Unendlich ?

Fotos und Animation  M.Heeg

Zur Zeitrafferanimation ( 25 Mb ) – timelapse_night_2017_12_28

Der Weltraum – unendliche Weiten …

Wir schreiben das Jahr 2200. Dies sind die Abenteuer des Raumschiffs Enterprise, das mit seiner 400 Mann starken Besatzung 5 Jahre lang unterwegs ist, um neue Welten zu erforschen, neues Leben und neue Zivilisationen. Viele Lichtjahre von der Erde entfernt, dringt die Enterprise in Galaxien vor, die nie ein Mensch zuvor gesehen hat …

… diesen Filmbeginn kennen wir alle !

Aber wie weit weg ist das ? Als Entfernungsmaß.- Angabe werden in der Astronomie, zusätzlich zu der uns allen bekannten Einheit Km, verschiedene weitere Einheiten benutzt.

Eine Astronomische Einheit ( abgekürzt AE ) hat eine Länge von 149 597 870 700 Metern und entspricht ungefähr dem mittleren Abstand zwischen der Erde und der Sonne, also dem mittleren Erdbahnradius. Dieses sind also ca. 149 Mio. Km

Ein Lichtjahr ( abgekürzt Lj ) ist die Strecke, die ein Lichtsignal in einem Jahr ( im Vakuum ) zurücklegt. Diese Strecke entspricht dann ca. 9,5 Billionen Km oder ca. 63241 AE.

Ein Parsec ( abgekürzt pc ) ist eine weiter Größenordnung.- Angabe für große Entfernungen.
In dieser Größe erscheint die Strecke einer Astronomischen Einheit unter dem Winkel von einer Bogensekunde. Ein Lichtjahr wären entsprechend ca. 0.3066 Parsec.

Einige Beispiele zum verdeutlichen :

Die mittlere Entfernung von Erde und Mond beträgt ca. 1,3 Lichtsekunden.
Die Erde ist von der Sonne im Mittel ca. 500 Lichtsekunden bzw. 8,3 Lichtminuten entfernt.
Die mittlere Entfernung zwischen Sonne und Neptun beträgt ca. 4,17 Lichtstunden.
Der sonnennächste Stern, Proxima Centauri, ist ca. 4,2 Lichtjahre entfernt.
Der Durchmesser unserer Galaxie, der Milchstraße, beträgt ca. 100.000 Lichtjahre.
Die Entfernung zur nächsten größeren Galaxie, dem Andromedanebel, beträgt ca. 2,4–2,7 Millionen Lichtjahre.
Die Raumsonde Voyager 1, die 1977 startete, erreichte 2013 einen Abstand zur Erde von ca. 18 Milliarden Kilometern, das entspricht etwa 18 Lichtstunden ( oder ca. 1/500 Lichtjahr ) und verließ die Heliosphäre.

Meine  AllSky-Aufnahme, wie auch die erstellte Zeitrafferanimation zeigen teilweise entsprechende Objekte.

Der Mond ca. 384.000 Km, Uranus ca. 17.2 bis 21.1 AE, Andromeda ca. 2,5 x 10 hoch 6 Lichtjahre entfernt …

Der Mond am Tag

Warum ist der Mond auch manchmal am Tag zu sehen ?

  Foto  M.Heeg

Mondphasen

Der Mond ist tagsüber aus dem gleichen Grund sichtbar wie auch nachts.
Er wird sowohl am Tage wie auch zur Nacht von der Sonne angestrahlt.

Wann er für uns zu sehen ist und welches Erscheinungsbild er dann hat ( Mondphase ), ist abhängig von seiner Position zur Erde und auch zur Sonne.

Seine Umlaufzeit um die Erde beträgt 27,3 Tage. Also ca. im Durchschnitt 1 Monat. Zur Mondphase ” Neumond ” befindet er sich, von uns aus gesehen, genau in einer Richtung zur Sonne. Deshalb ist seine ( nicht erhellte ) und nicht sichtbare Nachtseite uns zugewandt.
Dann geht er mit der Sonne auf und auch unter. Er ist tagsüber also nicht zu sehen ( da er für uns nicht sichtbar angestrahlt wird ).

Bei zunehmender Phase geht der Mond nach der Sonne unter und ist so, ( wegen der Beleuchtung ) dann ab der Abenddämmerung zu sehen.

Als Vollmond ist er in seiner nächsten Phase die ganze Nacht sichtbar. Hier steht die Erde dann genau zwischen Sonne und Mond. Er ist als ” Vollmond ” dann komplett angestrahlt / ausgeleuchtet.

Der abnehmende Mond wiederum bleibt am Tage bis zur Mittagszeit über dem Horizont sichtbar da er vor der Sonne untergeht. Es ist die Mondphase welche sich dem Vollmond anschliesst. In dieser Phase bewegt sich die Mondposition wieder auf die Sonne zu
weshalb die für uns sichtbare Ausleuchtung der Mondoberfläche abnimmt bis er sich wieder in Neumondpostition befindet.

Meine Aufnahme zeigt die ” abnehmende Mondphase ” bzw. wie toll, zumindest für mich, der Mond auch am Tage aussieht.

Sonne und Mond

Zwei wichtige Himmelskörper

mond_2017_03_02

sonne_2017_03_02  Fotos  M.Heeg

Zwei wichtige Himmelskörper

Wenn wir das nächste mal zum Mond und zur Sonne schauen, daran denken … ohne Sie gäbe es uns auch nicht !

Die Sonne ist der uns am nächsten gelegene Stern. Nur sie versorgt uns global mit der für alle notwendigen und zum überleben notwendigen Energie. Aber auch unser direkter Begleiter, der Mond, erfüllt alleine durch sein Vorhandensein eine wichtige Aufgabe.

Er stabilisiert gravitativ die Neigung der Erdachse. Selbst kleine Schwankungen des Winkels dieser Achse können große Auswirkungen haben. Die unterschiedlichen Temperaturen der Erdoberfläche ( Klimazonen )
sind vom Einfallswinkel der Sonnenstrahlen bestimmt, stehen also somit in direktem Zusammenhang mit dem Neigungswinkel der Erdachse.

Der Mond und die Sonne haben also dafür gesorgt, dass die Temperaturen ( unser Klima ) über Milliarden Jahre relativ konstant geblieben sind und sich somit das Leben, so wie wir es kennen, überhaupt entwickeln konnte.

Meine beiden Fotos zeigen die für uns so wichtigen Himmelskörper.

Alpen, Krater Plato und das Alpental

Monddetails

mond_plato_alpental_2017_01_06  Foto  M.Heeg

Objekte der Mondoberfläche

Die Mondalpen, Krater Plato und das Alpental

Wer die Mondalpen betrachtet dem fällt sofort ein gigantisches Tal auf, welches das lunare Gebirge rechts neben dem Krater Plato regelrecht durchschneidet.

Die Astronomen nennen diese ca. 180 Kilometer lange Vertiefung „ Alpental “. Es gehört wohl zu den meist fotografierten Gebilden auf dem Mond.

Seine Entstehung hat tektonische Ursachen einer Bruchzone und geht somit nicht auf den streifenden Einschlag eines Asteroiden zurück was wohl als erstes vermutet wird. In seiner Mitte ist längs auch eine berühmte Mondrille zu erkennen.

Plato ist bei Position  ♁51,6° N, 9,38° W zu finden.

Er besitzt einen Durchmesser von 101 km. Seine Tiefe beträgt etwa 1.000 m. Sein Kraterwall erhebt sich teilweise etwa 2.400 m über den dunklen Kraterboden.

Die Gipfel in den Mondalpen erreichen Höhen von 1,8 bis 2,4 km.

Auf meinem Foto sind die Objekte wie folgt zu finden :

Der Krater lks. oben ( Plato ) hat wie beschrieben ca. einen Durchmesser von 100 km. Rechts davon ist das Alpental  ( die langezogene ” Furche ” ) zu sehen. Sie ist ca. 10 Km breit. Längs in Ihrer Mitte befindet sich ( gerade noch als weisse Linie erkennbar ) die berühmte Mondrille mit einer Breite  von ca. 1 Km . Rechts oben im Foto sieht man auch noch schön den Krater Aristoteles, ein Krater mit terrassiertem Wall und ca. 3.5 km tiefe.

Strichspuraufnahmen

Und sie dreht sich doch …

strichspur_2012_09_29_02

strichspur_2012_09_29_01   Fotos   M.Heeg

Startrails

Im Mai und Juni hatte ich die schlechtesten Beobachtungs.- Astrofotobedingungen
seit vielen Jahren. Hierdurch waren fast keine Himmelsobjekte ablichtbar. Entsprechend habe ich heute hier “nur” etwas aus meinem Archiv einfügen können.

Die Aufnahmen stammen aus dem September 2012.  Sie zeigen die Möglichkeit / Ergebnisse einfacher Astrofotografie. Diese Art der Astrofotografie ertellt Strichspuraufnahmen .

Technische Details zu den Aufnahmen selber sind in wie immer der Bildunterschrift vermerkt.

Benötigt wird hierzu lediglich ein Kamera welche ” Langzeitbelichtung ” erlaubt, ein weitwinkliges Objektiv und ein Stativ. Die Kamera wird ohneNachführung ” ( Ausgleich der Erdrotation ) via Stativ auf einen “ sternreichenHimmelsausschnitt gerichtet. Die Dauer der Belichtung entscheidet nun über die Länge der ” Sternspuren “.

Hier noch eine Kurze Info zu Strichspuraufnahmen an sich, aus Wikipedia.

Strichspuraufnahmen oder Startrails sind in der Astrofotografie eine Art der fotografischen Wiedergabe welche den nächtlichen Himmel mit einer langen Belichtungszeit bei stehender bzw. nicht korrekt mitgeführter Kamera ablichten.

Durch die Erdrotation scheinen sich dann die Himmelskörper zu bewegen. Abhängig von der Brennweite des verwendeten Objektives existiert eine maximale Belichtungszeit, bei welcher die Sterne noch punktförmig abgebildet werden. Dieser Maximalwert in Sekunden errechnet sich nach folgender Faustformel :

420
t   =   —————————-
Objektivbrennweite

Längere Belichtungszeiten führen also zu Abbildungen, bei welchen die Himmelskörper nicht mehr punkt-, sondern strichförmig ( siehe meine Abbildungen ) dargestellt werden.

Quelle : Wikipedia

Jupiter

Gasplanet

jupiter_2015_03_18_02  Foto   M.Heeg

Der Riesenplanet

Der Jupiter ist mit einem Äquatordurchmesser von rund 143.000 Kilometern der größte Planet des Sonnensystems.

Er ist mit einer durchschnittlichen Entfernung von 778 Millionen Kilometern von der Sonne aus gesehen der fünfte Planet. Aufgrund seiner chemischen Zusammensetzung zählt er zu den Gasplaneten und hat keine feste Oberfläche.

Jupiter ist das dritt- bis vierthellste Objekt des Nachthimmels ( nach Mond und Venus ).
Abhängig von der Bahnkonstellation ist zeitweise der Planet Mars heller.

Benannt ist er nach dem römischen Hauptgott Jupiter.

Jupiter läuft auf einer annähernd kreisförmigen Umlaufbahn mit einer Exzentrizität von 0,0489 um die Sonne. Sein sonnennächster Punkt, das Perihel, liegt bei 4,95 AE und sein sonnenfernster Punkt, das Aphel, bei 5,46 AE.

Wegen seiner geringen Bahnneigung ( 1,3° ) bewegt sich seine Position immer nahe der Ekliptik.

Eine wichtige Funktion im Sonnensystem kommt ihm zu da er schwerer ist als alle anderen Planeten zusammen. Diese wesentliche Eigenschaft stabilisiert des Massengleichgewichtes im Sonnensystem.

Jupiter ist im Sonnensystem auch der Planet, welcher sich am schnellsten um seine Achse dreht. Seine Rotationsperiode beträgt knapp zehn Stunden, was aufgrund der Fliehkräfte zu einer Abflachung an den Polen führt. Für einen Umlauf um die Sonne benötigt Jupiter jedoch 11 Jahre und 315 Tage.

Von außen zeigt sich Jupiter in verschiedenfarbigen Bändern und Wirbeln von Wolken, in Weiß-, Rot-, Orange-, Braun-, Gelb- und teilweise auch Blautönen.

Außer den hellen und dunklen äquatorparallelen Wolkenbändern fällt an Jupiter vor allem der Große Rote Fleck auf ( GRF ). Dieser Rote Fleck ist ein riesiger ovaler Wirbelsturm, welcher etwa zwei Erddurchmesser ( in ovaler Richtung ) groß ist. Er liegt sehr stabil zwischen zwei Wolkenbändern bei etwa 22° südlicher Breite.

Erstmals wurde der Große Rote Fleck 1664 von dem englischen Naturforscher Robert Hooke beschrieben. Seitdem unterlag er nur leichten optischen Veränderungen.

Zum Vergleich, auf der Erde lösen sich Windwirbel in der Atmosphäre üblicherweise innerhalb einiger Wochen wieder auf. Aufgrund seiner Größe ist der Fleck bereits in Amateurteleskopen sichtbar. Seine markante Farbe ist deutlich röter als die Umgebung.

Auf meiner Aufnahme ist er, wie auch viele andere Details recht gut zu erkennen.

Allgemeine Infos

Masse : ca. 318 Erdmassen
Monde : 67
Temperatur : -108 Grad
Wasserstoff : 89,8 ± 2,0 %
Helium : 10,2 ± 2,0 %
Methan : 0,3 ± 0,1 %
Ammoniak : 0,026 ± 0,004 %

Quelle : Wikipedia

Polarlicht

Aurora borealis

polarlicht_2016_01_03_02

polarlicht_2016_01_03_01  Fotos   M.Heeg

Lichterscheinungen

Das Polarlicht ( als Nordlicht am Nordpol wissenschaftlich Aurora borealis, als Südlicht am Südpol Aurora australis benannt ) ist eine Leuchterscheinung durch angeregte Stickstoff– und Sauerstoffatome der Hochatmosphäre, welche in Polargebieten beim Auftreffen beschleunigter geladener Teilchen aus der Erdmagnetosphäre auf die Atmosphäre hervorgerufen wird.

Polarlichter sind meistens in zwei etwa 3 bis 6 Breitengrade umfassenden Bändern in der Nähe der Magnetpole zu sehen.

Ihre Energie stammt ursprünglich aus Emissionen der Sonne. Sonnenwindteilchen treffen auf die irdische Magnetosphäre und treten mit ihr in Wechselwirkung. Wenn die Plasmateilchen bis in die Atmosphäre herunterströmen, regen sie bei Kollisionen die verdünnten Gase in hohen Schichten der Atmosphäre an. Diese emittieren beim Abfallen der Erregung ein Fluoreszenzlicht.

Auch auf anderen Planeten des Sonnensystems werden diese Erscheinungen beobachtet. Voraussetzung hierfür ist, dass der Planet ein eigenes Magnetfeld und eine Atmosphäre besitzt.

Die Häufigkeit der Polarlichterscheinungen hängt von der Sonnenaktivität ab. Die großen koronalen Massenauswürfe sind für Polarlichter in Mitteleuropa verantwortlich.

Es treten vier verschiedene Arten von Polarlichtern auf, welche abhängig von den Sonnenwinden sind. Diese sind, Corona, Vorhänge, ruhige Bögen und Bänder. Wissenschaftlich werden sie gemäß der ” Valance-Jones Classification “ unterteilt.

Polarlichter können auch verschiedene Farben haben. Grünes Licht ( 557,7 Nanometer Wellenlänge ) entsteht durch Sauerstoffatome, die in gut 100 km Höhe angeregt werden und während ihrer angeregten Zeit auf andere Teilchen treffen.

Ohne Zusammenstoß emittieren Sauerstoffatome rotes Licht ( 630 Nanometer Wellenlänge ), was hauptsächlich in der dünneren Atmosphäre in höheren Schichten in etwa 200 km Höhe auftritt. Angeregte Stickstoffatome senden auch violettes bis blaues Licht  ( 428 Nanometer ) aus.

Vor oder außerhalb der wissenschaftlichen Erklärungen bestanden zahlreiche mythologische Erklärungen.

Verschiedene Kulturen im Norden Amerikas, Europas und Asiens sahen in ihnen Aktivitäten von Göttern und Geistern, sowohl in Form von Kämpfen oder Tänzen, aber auch als Mitteilungen an die Menschen. Besonders im Mittelalter galten in Europa Polarlichter, ähnlich wie Kometen, als Vorboten kommenden Unheils.

Meine Aufnahmen sind remote via Internet entstanden und zeigen z.B auch die zuvor beschriebenen Farb.- und Formvariationen.

Quelle : Wikipedia

Koronaler Massenauswurf

Sonneneruption

sonne_2015_09_30_04

sonne_2015_09_30_05

2015_09_30_ani  Fotos / Animation  M.Heeg

Aktivitäten der Sonne

Ein koronaler Massenauswurf ist eine Sonneneruption, bei der Plasma ausgestoßen wird.

Die Austrittsquellen sind meist Sonnenflecken, deren Eruptionen auch als Flares bezeichnet werden. Das ausgestoßene Plasma besteht hauptsächlich aus Elektronen, Protonen und zu kleinen Anteilen aus Kernen schwererer Elemente wie Helium, Sauerstoff und Eisen. Vermutlich verursachen Neuverbindungen der Magnetfeldlinien die Eruptionen.

Die Häufigkeit dieser Massenauswürfen ist eng an die Sonnenaktivität gekoppelt. Im Sonnenfleckenminimum sind sie deutlich seltener als im Sonnenfleckenmaximum. Ihre durchschnittliche Häufigkeit schwankt zwischen sehr geringen Aktivitäten und mehreren Ereignissen pro Tag.

Die wenigen Massenauswürfe, die tatsächlich auf die Erde zielen ( von der Sonne aus betrachtet hätte die Erde eine scheinbare Größe von nur 17,6 “, also etwa so wie ein Stecknadelkopf aus 10 Metern Entfernung gesehen ), werden als geoeffektiv bezeichnet und beeinflussen die Magnetosphäre und die Ionosphäre der Erde.

Die Magnetosphäre wird auf der Tag-Seite zusammengedrückt, auf der Nacht-Seite verlängert sich der Schweif. Dabei werden große Mengen Energie freigesetzt, was u. a. zu ausgeprägten Polarlichtern führt. Koronale Massenauswürfe können Schäden an Satelliten verursachen und aufgrund der erhöhten Elektronendichte in der Ionosphäre Rundfunkübertragungen stören.

Meine Fotos bzw. die Zeitrafferanimation zeigt die Entwicklung eines Massenauswurfs und im Bereich der Aktiven Region 2422 ein Flare welches ich am 30. Oktober 2015 über einen Zeitraum von ca. 2 Stunden beobachten konnte.

Quelle : Wikipedia